Lattice Wave Digital Filters

by Craig A. Lindley


There has been a lot written about the design and implementation of digital filters over the years and I periodically survey the literature to try and keep up with it. It seemed the right time to look around again when I decided to build a digital color organ
 which would require digital filtering. During this latest survey, I came upon Lattice Wave Digital Filters (LWDFs) which I was not familiar with. These filters piqued my interest as they had intriguing properties directly applicable to my application.

Typically when I find a technology that interests me, I go overboard in my research and spend lots of hours playing with it in order to understand it. LWDFs were no exception. This article, and the  accompanying design tool, were a result of my investigation into LWDFs which were just too cool to pass up. We will get to LWDFs shortly but first a little context.

There exists two major classes of digital filters referred to as Infinite Impulse Response (IIR) sometimes called recursive filter and Finite Impulse Response (FIR) or convolution filters. Both of these filter types have advantages and disadvantages which make them each suitable for a variety of applications. IIR filters might be used, for example, in applications where cost is a concern because they can be implemented using a minimum of hardware/software resources. FIR filters would be used in applications where linear phase response is required such as in high end audio applications, the processing of sensor data or possibly radio telescope data. FIR filters use more resources to implement the same order filter as an equivalent IIR filter. 

Typically IIR filters are not as stable as their FIR counterparts. This fact is reflected in their names. IIR filters (Infinite Impulse Response) filters will typically ring for a period of time after being subjected to a an impulse waveform. FIR filters are better damped and any ringing of the filter will be of much shorter duration. IIR filters also have sensitivity to word length limitations and coefficient round off errors which makes their implementation tricky. All this is to say that testing is very important for any digital filter you design (regardless of technology) to make sure it is performing per your requirements. 

IIR filters were appropriate for the application I had in mind because of their inherent efficiencies but only if their stability issues could be controlled or eliminated. This is where LWDFs came into play. 

All of the information I found on these filters indicated they were extremely stable, had a large dynamic range and weren't sensitive to either limited word lengths or round off errors. LWDFs don't correct the erratic phase response of classic IIR filters but phase response is not important in my application.

LWDFs filters were first proposed by Professor Alfred Fettweis in 1971 and are backed with an extensive amount of complex network theory which one does not need to understand to apply. A lot of information can be found on the Internet describing these filters. The Resource sidebar details some of the most useful papers I found. Specifically, the TI application note and the paper by Gazsi were the most helpful to me and my understanding of this technology.

LWDFs are a cascade of first and second order all pass filter sections. Each all pass section is made up of a two port adapter (picture a little box with two inputs in1 and in2 and two output out1 and out2) along with a one sample delay element. Every adapter has a gamma value (gamma values range in value between -1 and +1) which controls the response of the all pass section. Adapter are implemented in software using of set of network formulas which require a single multiplication and three additions each. The LWDFs we are discussing use four types of adapters as filter building blocks. The number and the variety of adapters used along with the gamma values associated with each are typically generated using some sort of filter design tool. More on filter design tools shortly.

Even though the gamma value controls the response of the all pass sections, we don't typically deal directly with gamma in an implementation. Instead, alpha values in the range 0 .. 0.5 are used as multipliers because they are easier to use and implement. Each of the four adapter varieties uses a different method of converting gamma into alpha. This is illustrated in the table below.

Adapter Type
Gamma Range
Gamma/Alpha

Conversion
2 Port Network Formulas

Type 1
0.5 < gamma < 1.0
alpha = 1 – gamma 
p = in1 - in2

out2 = alpha * p + in2

out1 = out2 - p

Type 2
0.0 < gamma <= 0.5
alpha = gamma
p = in2 - in1

out2 = alpha * p + in1

out1 = alpha * p + in2

Type 3
-0.5 <= gamma < 0.0
alpha = |gamma|
p = in1 - in2

out2 = alpha * p - in1

out1 = alpha * p - in2

Type 4
-1.0 < gamma < -0.5
alpha = 1 + gamma
p = in2 - in1

out2 = alpha * p - in2

out1 = out2 - p

Low pass, band pass, band reject and high pass filters of Butterworth, Chebyshev and Cauer Parameter (Elliptic) forms can be built using the adapter building block approach. Actually only low and high pass filters are directly implemented. Band pass and band reject filters are produced by cascading high pass and low pass filters together. 

Note, only odd order (1st order, 3rd order, 5th order, etc.) filters can be designed using these techniques. Note also that there is a one to one ratio between filter order and the number of adapters necessary to achieve it. Three adapters will be required for a 3rd order filter, for example.

Adapters and delays are connected together using a standard topology to form LWDFs. The standard topology is shown in Figure One.

The single sample delay associated with each adapter records the previous output of the adapter. The previous output is used in conjunction with the current input and gamma/alpha value to produce a new output from the adapter. All adapters working together form the LWDF.

As also shown in Figure One, the filter's response is determined by how the final top and bottom adapter output are combined. If the top and bottom outputs are summed and divided by two the result is the low pass response. If the bottom output is subtracted from the top output and divided by two, the result is a high pass filter.

Bandpass and band reject (also called band stop or notch) filters are built by cascading a high pass LWDF and a low pass LWDF in that order. If the low pass output is used from the final low pass filter a bandpass filter results. If the high pass output of the low pass filter is used instead, a band reject filter results. Of course it is necessary to design the high and low pass filters correctly to get the bandpass or band reject response you desire.

The order in which adapters are executed is very important to the stability of the resulting LWDF. It is important to execute all of the top adapters (A0, A3, A4, etc.) before executing the bottom adapters (A1, A2, A5, A6, etc.). Also, the adapters must be executed from the outside in. That is, A2 is 

[image: image1.emf]Figure One

LWDF Topology

in2

D

D

D

out2 out2

out2

out2

in2

in2

in1

out1 out1

out1 in1

in1

out1

out1

A0 A0

A1

A2

out2

out2

out2

in1

out2 in2

in1

out1

in1

in1

D

D

in2 in2

D

D

in2

in2

out1

out1

out1

A4

A3

A5

A6

in2

out2

out2

in1

in1

out2

D

D

D

D

out2

out2

out2

in2

in2

in2

out2

in1

in1 out1

out1

out1

in1

in1

in2

out1

A2*n

A2*n-1

A2*n

A2*n-1

out2

in1

HP 

Output

LP 

Output

1/2

1/2

-1

+

+

+

In

LP output = 

top out + bottom out / 2

HP output = 

top out - bottom out / 2

D is a one sample delay


[image: image2.png]£ Lattice Wave Digital Filter Design and Simulation Program

Plaase select the filter method, flter fype and sample rate of the filter you would like to design.

Then click Next' to contintie...

Fiter Method Fiter Type.

© Butterworth ® Lowpass

() Bandpass
® Chebyshey
() Bandreject

© Cauer-Elliptic © Highpass

Sample rate (samplesisec): [16,000

Hint: \Data validates Ok




executed before A1, A4 before A3, etc. The following example illustrates this.

LWDF Design Example

Suppose we want to design a filter with the following characteristics:

Sample rate: 16000 samples/second

Type: Chebyshev Low Pass

Passband edge frequency: 125

Stopband edge frequency: 250

Passband ripple (dB): 0.5

Stopband attenuation (dB): 18

Running these specifications through an LWDF design tool tells us that the resulting filter will be 3rd order. Figure Two shows us what the actual filter topology looks like. 

In addition to the filter's order, the LWDF design tool provides us with information about the types of adapters to use and the gamma/alpha values associated with each. For our example filter,

Adapter Number
Adapter Type
Gamma Value
Alpha Value

0
1
0.9684728264125462
0.03152717358745383

1
4
-0.9684947956808496
0.03150520431915038

2
1
0.9985840227517984
0.00141597724820163

With this information the filter can be implemented. Listing One shows a Java implementation though you could implement it in the computer language of your choice. If you fed this function a stream of appropriate digital samples you would get a response close to what was specified. 

Assembly language programmers don't get off so easy. Listing Two shows the same filter written in MSP430F2012 assembly language.


/**


 * Listing One – Java implementation of Low Pass Lattice Wave Digital Filter


 * 


 * Third order Chebyshev with fc ~ 125 Hz


 *


 * Adaptor 0
Type 1


 * Adaptor 1
Type 4


 * Adaptor 2
Type 1


 *


 * Adapter implementation order: 0,2,1 


 * The three delays are integer values declared elsewhere


 * @param sample the input sample to the filter


 * 


 * @return filtered output sample


 */


public int filter(final int sample) {



// Alpha values for Low Pass filter



double ALPHA0 = 0.03152717358745383;



double ALPHA1 = 0.03150520431915038;



double ALPHA2 = 0.00141597724820163;



// Adaptor 0 - Type 1



int in1 = sample;



int in2 = delay0;



int p = in1 - in2;



double acc = p * ALPHA0;



int out2 = (int) acc + in2;



delay0 = out2;



int out1 = out2 - p;



int topOutput = out1;



// Adaptor 2 - Type 1



in1 = delay1;



in2 = delay2;



p = in1 - in2;



acc = p * ALPHA2;



out2 = (int) acc + in2;



delay2 = out2;



out1 = out2 - p;



// Adaptor 1 - Type 4



in1 = sample;



in2 = out1;



p = in2 - in1;



acc = p * ALPHA1;



out2 = (int) acc - in2;



delay1 = out2;



out1 = out2 - p;



int bottomOutput = out1;



// Combine outputs



return ((topOutput + bottomOutput) / 2);


}

-------------------------------------------------------------------------------

; Listing Two – MSP430 assembly language implementation of 

; Low Pass Lattice Wave Digital Filter

;

; Third order Chebyshev with fc ~ 125 Hz

; Multiplication code generated by Horner.java.

;

; Adaptor 0
 Type 1

; Adaptor 1
 Type 4

; Adaptor 2
 Type 1

;

; Alpha0 = 0.03152717358745383

; Alpha1 = 0.03150520431915038

; Alpha2 = 0.00141597724820163

;

; Adapter implementation order: 0,2,1 

; Register assignments: R4=in, R5=in1, R6=in2, R7=p, R8=acc, R9=out1, R10=out2

;-------------------------------------------------------------------------------

;

lowPassFilter

;

; Adaptor 0 - Type 1

;


mov
in,in1


; sample into in1


mov
&LowLPDelay0,in2
; delay int in2


mov
in1,p


; p = in1


sub
in2,p


; p = in1 - in2

; Horner equations: 

; T1 = X * 2^-3 + X

; T2 = T1 * 2^-7 + X

; Fraction result = T2 * 2^-5


mov
p,acc


rra
acc


rra
acc


rra
acc


add
p,acc


rra
acc


rra
acc


rra
acc


rra
acc


rra
acc


rra
acc


rra
acc


add
p,acc


rra
acc


rra
acc


rra
acc


rra
acc


rra
acc


add
in2,acc

; acc = out2


mov
acc,&LowLPDelay0
; store delay for next time


sub
p,acc


; out1 = out2 - p


mov
acc,out1

; Save top output

;

; Adaptor 2 - Type 1

;


mov
&LowLPDelay1,in1
; in1 = delay1


mov
&LowLPDelay2,in2
; in2 = delay2


mov
in1,p


; p = in1


sub
in2,p


; p = in1 - in2

; Horner equations: 

; T1 = X * 2^-3 - X

; T2 = T1 * 2^-2 + X

; Fraction result = T2 * 2^-9


mov
p,acc


rra
acc


rra
acc


rra
acc


sub
p,acc


rra
acc


rra
acc


add
p,acc


rra
acc


rra
acc


rra
acc


rra
acc


rra
acc


rra
acc


rra
acc


rra
acc


rra
acc


add
in2,acc

; acc = out2


mov
acc,&LowLPDelay2
; store delay for next time


sub
p,acc


; acc = out1

;

; Adaptor 1 - Type 4

;



mov
in,in1


; sample into in1


mov
acc,in2

; out from previous stage


mov
in2,p


; p = in2


sub
in1,p


; p = in2 - in1

; Horner equations: 

; T1 = X * 2^-7 + X

; Fraction result = T1 * 2^-5


mov
p,acc


rra
acc


rra
acc


rra
acc


rra
acc


rra
acc


rra
acc


rra
acc


add
p,acc


rra
acc


rra
acc


rra
acc


rra
acc


rra
acc


sub
in2,acc

; acc is out2


mov
acc,&LowLPDelay1
; store delay for next time


sub
p,acc


; acc is out1

;

; Combine outputs

;


add
out1,acc

; sum of output1 + output2


rra
acc


; divide by two


mov
acc,out

; output in "out"


ret

LWDF Design Tools

When I first started experimenting with LWDFs I used a program called wd_coeff.exe from TI (see Resource sidebar) to generate adapter types and alpha values for the filters I needed to build. I then hand coded the filters in MSP430 assembly language and generated a series of sine waves (internal to the processor) to validate my designs. This was a tedious process to say the least. Later, I wrote a Java program to simulate the filters with the coefficients generated by wd_coeff.exe. This was better but still left a lot of room for error. Finally I wrote a full LWDF design program called LWDFDesigner.java, that takes a set of filter specification like we used for our example and does the following:

1. Performs the LWDF calculations necessary to design the filter. LWDFDesigner supports Butterworth, Chebyshev and Cauer Parameter (Elliptic) filters of low pass, band pass, band reject and high pass varieties.

2. Compiles the filter design into a filter topography in memory.

3. Subjects the compiled filter to a stream of digital samples from 50 Hz to 50 Hz less than one half the specified sample rate and captures the results.

4. Analyzes the filter's response and graphs the result.

LWDFDesigner make LWDF filter design easy. The ability to see the results of filter execution immediately takes most of the guest work out of the process. LWDFDesigner is still a work in progress and will evolve over time. I plan on adding a plug-in to the program that will generate the MSP430 assembly code for the filters directly. As it stands now, the filters designed using LWDFDesigner must still be coded by hand using the information generated by the program.

The Design Cycle

I would like to tell you that by using a LWDF design tool you are able to crank out filters that match your specifications exactly everytime but I cannot. I know from implementing LWDFDesigner that inside these design programs are approximations and parameter quantizations that result in a filter that in most cases is close to what was specified. In fact both the TI program and LWDFDesigner support the concept of design margin which has direct impact on the designed filter. Design margin is a number from 0 .. 1 which determines whether the filter's stopband or the passband should be given the most effort to get right. Values towards one concentrate the design accuracy on the passband. Values towards zero concentrate on the stopband.  Tweaking the design margin just a little bit changes the generated gamma values; sometimes by quite a bit.

With these facts in mind, the LWDF design cycle looks something like this:

1. Determine the initial set of filter specifications for the filter you want to design.

2. Run LWDFDesigner inputting these specifications.

3. Graph the result to see the resulting filter response

4. If the filter matches your specifications you are done with the design phase, if not ...

5. Modify one or more of the filter's parameters and/or the design margin and go back to step 2 and try again

Once you are satisfied with the design, it is time to implement the filter. If you are a “C” or Java programmer you can write code that looks like Listing One making sure you code the correct adapter types and gamma/alpha values produced by the design tool. Remember also it is very important to implement the top adapters first and get their execution order correct. If you are an assembly language programmer, you can take the alpha values and run them through Horner.java provided with my previous article to get the equations and/or the code for incorporating into your filter.

Conclusions

LWDFs are a good choice for many applications. They are easy to design, for the most part they function as designed, they can be implemented in a small amount of data and code space, they use CPU cycles sparingly and seem to be stable. Maybe you can put them to use in your next project. 

Sidebar One – Running LWDFDesigner.java

To run LWDFDesigner.java you will need to have a Java Development Kit (JDK) installed on your computer. The program was written for use with Java 5 which is available for free from Sun Microsystems at: http://java.sun.com/javase/downloads/index_jdk5.jsp. The newer, version 6, of Java should also work.

An executable version of the LWDFDesigner.java program is available from Nuts and Volts in this article's archive in the file: LWDFDesigner.jar.  The code is meant to be run directly from the jar file using the following command line from a command shell (cmd.exe) in Windows XP.

java -jar <path to where the jar file resides>\LWDFDesigner.jar

If this doesn't work, make sure the bin directory of the JDK installation is on the Path in your command shell. Alternately you can change directories to the JDK bin directory and run the above command from there. LWDFDesigner does not require any command line arguments.

LWDFDesigner is written as a graphical based wizard that guides you through the steps necessary to successfully design a filter. Each wizard page or panel validates the user entered data before allowing the user to proceed to the next page/panel. As you enter data into the program you should tab between fields to commit and validate data. When the program is satisfied with the entered data the 'Next' button will be enabled allowing you to move to the next page. The screen shots that follow show what to expect.
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Sidebar Two – Resources

You may find the following resources helpful.

Java version 5 is available at: http://java.sun.com/javase/downloads/index_jdk5.jsp
A Texas Instruments application note discussing Lattice Wave Digital Filters is available at:

http://focus.ti.com/mcu/docs/mcusupporttechdocsc.tsp?sectionId=96&tabId=1502&abstractName=slaa331
Fettweis, Alfred, "Wave Digital Filters: Theory and Practice", Proceedings of the IEEE, Vol. 74, pp.

276-327, February 1986.

Gazsi, Lajos, "Explicit Formulas for Lattice Wave Digital Filters", IEEE Transactions on Circuits and

Systems, Vol. 32, No. 1, pp. 68-88, January 1985.

Sidebar Three – Author's Bio

Craig A. Lindley is a degreed hardware engineer who, for many years, has been writing large scale Java applications. Craig has authored over 25 technical articles on various programming topics and has written five books dealing mostly with multimedia. His book “Digital Audio With Java”, published by Prentice-Hall, is all about processing sound with DSP software written in Java.  He can be contacted via email at: calhjh@gmail.com.
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�	 A color organ is a device that splits music up into numerous frequency bands and modulates colored lights (one color of light per band) according to the musical content.
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