I'm one of those people who walk around the house after dark and turn off all lights that have been left on. I do this because I was trained by my parents to conserve electricity. This was important then and is even more important now as we all try to cut back on our energy use and carbon footprint. In thinking about conservation it occurred to me that hosting my personal website on a desktop PC used a lot of energy. Even without a monitor, a desktop PC draws about 120W of power or about 200KWH a year. I designed and built Webster, the mini web server, as a low power alternative.

There are many uses for Webster like web servers including:

As a personal web server for sites that don't use a lot of rich media.

To provide a web presence for a business for publishing hours, directions, etc.

As a toy for children who want to have their own website.

Webster's features include:

Low power operation. Only 160 mA is required in the idle state and 300mA when actively serving pages. At 9 volts this works out to about 2.7 watts.

Small size. The prototype, see Photo 1, is about the size of a hardbound book.

Built using the highly integrated PIC18LF2620 microcontroller (uC).

10 baseT Ethernet connectivity.

Support for static and dynamic (DHCP) IP address assignment

TCPIP support using version 4.16 of the Microchip TCPIP stack optimized for serving static HTML pages.

Support for basic authentication for website access control.

USB host interface with FAT file system allows web page storage on pluggable USB flash drives or SD media.

Easy to build. Webster is mostly made up of assembled and tested modules.

Webster and Me

I use Webster for my personal website for numerous reasons. Besides the power issue, Webster can be put on the Internet without concern for viruses and spy-ware. Webster's software is written entirely in C with no underlying operating system with exploitable security flaws. Since, by design, there isn't any write access to the underlying FAT file system, it is not possible for the website content to be compromised. In addition, since no sensitive data is kept on the flash file system there is nothing for a hacker to find. Finally, since Webster supports basic authentication, access to the website can be controlled with a user name and password. Of course, like any web server, Webster could be brought to its knees (and its legs are really short) by a denial of service attack.

Building and maintaining a website with Webster is easy. Web pages are composed on a PC using any HTML editor (I use Composer by Mozilla) and when the design is finished, the files are copied onto a USB flash drive which is subsequently plugged into Webster. When Webster's reset button is pressed, the new or modified website becomes operational. It is just that easy.

It is important to note at the most basic level any web server is just a device that understands and implements the HTTP protocol; a web server doesn't influence website content. A web server's job is to stream requested content to a user's browser whether that be HTML files, image files, PDF files, MP3's, etc. This is an important because it is the content of the served up files that may or may not be compatible with different browsers. If the website you serve with Webster works with Internet Explorer but not with Firefox it is probably not Webster that is at fault.

Webster Design

As with any new design, I wrote down the requirements I wanted Webster to fulfill and then determined how each could be met. I soon realized each requirement could be met using technology I had seen in Nuts and Volts magazine.

Webster Hardware

As mentioned the hardware is made up mostly of commercially available modules. I used the USB client port DLP USB232M module for RS-232 like support, the USBwiz-OEM module to provide USB host ports (actually two USB host ports and an SD interface) and FAT file system support and the Microchip PICTail Plus module for Ethernet connectivity. Missing was a power supply and a uC to drive it all.

The DLP USB232M module, the USBwiz-OEM module, the PICTail module and the three on board LEDs are all mapped into the uC's I/O space. Signal connections are shown in the table below. Signals prefixed with WIZ_ are associated with the USBwiz module. Signals prefixed with ETH_ are associated with the PICTail module. Signals USB_RX and USB_TX are associated with the DLP module. Signals prefixed with LED_ are associated with the three on board LEDs.

Signal�
Interconnect

 Connector-Pin�
uC

 Port�
Port Pin

Direction�
uC

Pin Number�
�
WIZ_5VOLT�
ICT2-1�
Na�
Na�
Na�
�
WIZ_GND�
ICT2-2�
Na�
Na�
Na�
�
WIZ_DATARDY�
ICT2-3�
RA1�
in�
3�
�
WIZ_BUSY�
ICT2-4�
RA2�
in�
4�
�
WIZ_SCLK�
ICT2-5�
RC3�
out�
14�
�
WIZ_DI�
ICT2-6�
RC5�
out�
16�
�
WIZ_DO�
ICT2-7�
RC4�
in�
15�
�
WIZ_CS*�
ICT2-8�
RA0�
out�
2�
�
WIZ_RESET*�
ICT2-9�
RA3�
out�
5�
�
ETH_3.3VOLT�
ICT1-1�
Na�
Na�
Na�
�
ETH_GND�
ICT1-2�
Na�
Na�
Na�
�
ETH_RESET*�
ICT1-3�
RB4�
out�
25�
�
ETH_SCLK�
ICT1-4�
RC3�
out�
14�
�
ETH_DI�
ICT1-5�
RC5�
out�
16�
�
ETH_DO�
ICT1-6�
RC4�
in�
15�
�
ETH_CS*�
ICT1-7�
RB3�
out�
24�
�
ETH_INT*�
ICT1-8�
RB0�
in�
21�
�
USB_RX�
Na�
RC6�
out�
17�
�
USB_TX�
Na�
RC7�
in�
18�
�
LED_0�
Na�
RC0�
out�
11�
�
LED_1�
Na�
RC1�
out�
12�
�
LED_2�
Na�
RC2�
out�
13�
�

Na – Not applicable. Signals marked with * are active low.

The SPI interface of the PIC18LF2620 uC is used to transfer data serially to and from the USBwiz-OEM and the PICTail modules. Chip select signals, WIZ_CS and ETH_CS, are used to select which module is addressed.

Construction

The Webster prototype was built into a plastic case from an old modem. The case measured 5” wide x 7” deep x 1.5” tall. My first task was to place all of the modules in the case to make sure they fit and to drill holes for the standoffs used to mount them. I decided the USB flash drive would be safer inside the case than out so the USBwiz-OEM board was positioned appropriately. Construction began once the positioning and mounting was decided upon.

I built the power supply module (see schematic) on a small piece of pref board. This circuitry is powered by a 9 volt DC 300mA wall wort. The 5 volt regulator gets warm to the touch so a heat sink of some kind may be in order. Once completed I verified a clean source of 5 VDC and 3.3VDC. An optional power on LED is shown on the schematic but I believe there are enough glowing LEDs on the finished server to need another.

As for the uC and support circuity, I purchased DHMicro's Rapid28iXL prototype board which is designed for use with 28 pin PIC uCs. The basic kit comes with most of the support components needed. I made numerous changes to the prototype board including trimming off the RS-232 portion of the board as I wasn't going to use it and doing this made the board smaller yet. I also left all of the power supply components off of the board except for bypass capacitors as I built the power supply separately. I powered the uC board with 3.3 v instead of 5 volts as that eliminated interface components between the uC and the PICTail board which runs on 3.3 volts.

After assembly of the uC components I soldered two 14 pin and one 24 pin wire wrap sockets into the proto area of the Rapid28iXL board. The 14 pin sockets would be used for connecting the PICTail and the USBwiz modules to the uC. The 24 pin socket is used for the optional DLP USB232M module. As shown on the schematic, the PICTail and the USBwiz modules are wired to the uC board using 14 pin component headers and the on board sockets. This was done so these modules could be unplugged while the uC board was worked on. Its nice the prototype board has all of the PIC signals broken out and labeled. It makes wiring easy. I used wire wrap wire for all of the interconnections.

Once assembly was complete I connected the uC board to the power supply and to the ICD2 debugger/programmer. I wrote and downloaded several small C programs to blink the three on board LEDs just to make certain the uC was operational.

The PICTail module was wired up next. I couldn't find a mate for the edge connector on the module so I soldered wires directly to the gold fingers. This is delicate work requiring a magnifying glass and steady hands because the fingers are so small and close together. I first soldered wire wrap wires to the module and then soldered the other end of the wires to a 14 pin dip component header used for the interconnect. Finally, I soldered wire wrap wire to the USBwiz-OEM board and terminated the other end of the wires in another 14 pin component header.

With all of the modules wired up I mounted them in the case. I hard wired the power supply to the front panel and to the uC board. After plugging in the wall wart, I again verified the power supply outputs. I checked the voltages after plugging in each module, one at a time.

Once you get this far building your version of Webster, it is time to program the processor with the runtime code. We talk about the software next.

Webster Software

All of Webster's software is written in C using the Microchip MCC18 C compiler (student edition) embedded into the MPLAB Integrated Development Environment (IDE) both of which are available free from Microchip. See the Resource sidebar for more information. I used the Microchip ICD 2 debugger and programmer (not free) during code development and testing. It interfaces to the Webster hardware via a five wire In Circuit Serial Programming or ICSP interface. ICD 2 interfaces to the PC via a USB interface. ICD2 also has a serial interface but I never used it.

The Microchip TCPIP stack makes up the bulk of the code followed by the library of code for the USBwiz-OEM module provided free by GHI Electronics. My software effort consisted of :

Writing a high level file system interface used to connect the HTTP server code to the file system. See the files Ffs.h and Ffs.c.

Rewriting Microchip's server code (HTTP2.c) to make it as compact as possible as code space was tight. At the same time I optimized the code for serving static web pages and removed all unneeded functionality.

Writing the code in main.c which initializes all of the hardware, parses the server's configuration file and starts the server.

Tuning the TCPIP stack to provide 10 TCP sockets and 10 possible simultaneous HTTP connections.

Generating custom linker command files for optimizing the size of file system buffers, TCP data structures and ethernet buffers. One linker command file is required for debugging (18f2620i.lkr) and another (18f2620.lkr) for the production code.

All of Webster's source code is available from the Nuts and Volts website. To utilize this code you must have the MPLAB IDE and the MCC18 compiler. If you use other code development tools you will have some work to do. Once you get the code to compile and link use your programmer to program the uC.

Webster Configuration File

Webster's operation is controlled by a configuration file called “config.dat” that must reside in the root directory of the flash drive. The server cannot be configured via RS-232 with the version of the software provided. Webster will blink all three on board LEDs and halt operation if the configuration file is not found or if an error is detected in the configuration file. Below is a typical configuration file.

//

// Webserver Configuration File - No blank lines allowed

//

Hostname: Webster

Use DHCP: no

Use Authentication: yes

Username: roy

Password: rogers

//

MAC Address: 00-04-A3-00-47-F7

//

// IP Addresses - Only necessary if not using DHCP

//

Static IP Address: 169.254.1.1

Static Gateway Address: 169.254.1.1

Static Subnet Mask: 255.255.0.0

Static Primary DNS Server Address: 169.254.1.1

Static Secondary DNS Server Address: 169.254.1.1

The configuration file is a human readable text file with each line terminated by carriage return and line feed characters. The code (in main.c) that parses this file is not very forgiving so it is important to not deviate from the format shown. No blank lines are allowed within this file and comment lines begin with “//” starting in the first column. All entries must be in the configuration file even if they are not being used. For example, if DHCP is being used, all of the Static entries must still be in the file and must still have a value. The configuration entries can, however, be specified in any order; not just that shown above.

Most entries in the configuration file are self explanatory. The table below gives the details.

Configuration Tag�
Value�
Notes�
�
//�
Comment text�
All text to the end of the line is ignored.�
�
Hostname:�
The name you want to assign to your server�
Assigns a name to the server. �
�
Use DHCP:�
yes or no

(must be lower case)�
If yes, the webserver gets its IP address from a DHCP server on the network. If no, all of the static entries in the configuration file are used instead.�
�
Use Authentication:�
yes or no

(must be lower case)�
If yes, a user must be authenticated to access the website. If no, the website is wide open. If authentication is being used, the user will be presented with a login dialog box where she/he must specify the correct username and password to gain access to the website.�
�
Username:�
The authenticated user's name

(case is significant)�
This entry is only important if authentication is being used.�
�
Password:�
The authenticated user's password

(case is significant)�
This entry is only important if authentication is being used.�
�
MAC Address:�
The MAC address of the ethernet interface.�
A sticker on the PICTail board contains a number that can be used to form a unique MAC address. When this decimal number is converted to hex it becomes the last three bytes of the MAC address. My PICTail number was 18423 making my MAC address 00-04-A3-00-47-F7�
�
Static XXXX:�
Static network values�
All of the static entries must be filled in correctly if static IP addressing is to be used. �
�

To make configuration changes, remove the flash drive from the server and connect it to your PC. You can use notepad to edit the configuration file once the drive is mounted by Windows. After you save your changes, move the flash drive back to the server and hit the reset button. Webster should come up with the new configuration operational.

Assuming you get the uC programmed, you have wired everything correctly and a valid configuration file exists turning on the power should cause the various LEDs to come on, the flash drive to blink as the configuration file is read and LED0 to blink about once a second. If all is well you are ready to connect your server to a network. If you do not see these indications go back and check your work and try again.

FAT Flash File System

There are a few rules that must be observed for the files and directories that make up website content. The first and foremost is that with the current version (as of Nov 2007) of the USBwiz-OEM firmware, filenames must be eight characters or less with a filename extension three characters or less. In other words, like old versions of Windows, only short filenames are supported. GHI Electronics is saying that version 3 of their firmware (probably available as you read this) will support long filenames. Luckily the USBwiz firmware is easily upgradeable on the older boards. Note the eight character filename limit applies to directory/subdirectory names as well. Actually the limit is twelve characters but it is unusual to see directories names containing a name, period and a file extension.

The next rule is that total path length to any file on the flash drive must be less than 63 characters. Keep this in mind as you organized your data. Too many subdirectory levels can cause Webster to malfunction. Total path length is controlled by the define:

#define HTTP_MAX_FN_LEN (64u)	// Max path/filename length

in the file HTTP2.h. This number can be increased if it seems too restrictive.

Finally the configuration file, “config.dat” must reside in the root directory of the flash drive or else it won't be found on power up.

Having stated the hard and fast rules that must be followed, I can tell you how I organized the files for my personal website. I put the configuration file and all HTML (.htm actually) files in the root of the flash drive. This includes a file called index.htm which is the entry point into my website. I then made subdirectories for images and music files. The image files are further organized into subdirectories such as house and woodwork, etc. In other words images are contained in directories two levels deep. Notice I said woodwork instead of woodworking as woodworking is more than eight characters in length and would violate our directory name length constraint.

Using Webster on a Network

Before putting Webster on a network you must decide if static or dynamic IP addressing is to be used and you must edit the configuration file accordingly. Using DHCP is always easiest if your network permits it. For my website, I connect Webster directly to my wireless router and use DHCP so the router assigns an IP address automatically. This works very well. Once your web server has a public IP address you must open up the firewall in the router to allow inbound HTTP connections so users outside your network can hit your server. How this is done depends upon your firewall software.

A problem in trying to host a website on a home DSL connection is that the IP address assigned to your DSL router changes under certain conditions. This is a problem whether you are using Webster as your server or a professional product like Apache. Regardless of how you access your website when your router's IP address changes, connectivity to your website using an old address will be lost.

A solution to this problem that allows one to host a DSL connected website is a program called No-IP. See Resource sidebar for info. The company www.noip.com offers a free dynamic DNS and web redirection service for just this purpose. No-IP will even provide you the use of a domain name from a list of pre-existing domains that you can use for free. Since I am an avid home brewer I chose the domain servebeer.com for my use.

The No-IP program runs as a service under Windows XP. It continually monitors the public address exposed by your router for your web server and informs No-IP's DNS servers of any changes. So as long as access to your website is via your chosen domain name, you are insulated from changes to your router's IP address. By running No-IP on any PC in your network, access to your website will be maintained even if the public IP address of your router/server changes. Pretty slick huh?

Once you register your web server host with No-IP and your server is operational, you can ping your server with the following command typed into a cmd shell on your PC:

ping webster.servebeer.com

Executing this command will verify whether my web server, host name webster in the domain servebeer.com is operational or not. You would need to change the ping command for your server in your chosen domain.

Once you can ping your server, you should be able to access your website with a browser (Internet Explorer, Firefox or whatever) by specifying a Universal Resource Locator or URL of the form:

http://hostname.domainname

If you don't specify a specific HTML file to access, the file index.htm will be assumed. You must make sure a file of this name exists in the root of the flash drive. Once this works, you are good to go.

Conclusions

Webster was fun to design and build and will help me do my part to conserve energy. Webster is only the first generation implementation of this idea and hence is not as capable as I had hoped. Truth be told, Webster is fine for serving up web pages that are mostly text but suffers when trying to serve rich media like images and music. Webster is like the little engine that could. It tries really hard to push out media rich pages but it takes a while to do so.

Building a one off of any electronic product is expensive. Building Webster will cost you between $150.00 and $175.00 depending upon whether you incorporate the optional USB 232M-G USB client port into your version.

I learned a lot from this project I will use in designing the next generation Webster. Stay tuned ...

Photo 1 – The Webster Prototype

Figure 1 – Schematic Part 1

Figure 2 – Schematic Part 2

Figure 3 – Webster Parts List

Designation�
Value�
Notes�
�
C1,C2�
15 pf�
�
�
C3,C5,C6,C7,C8,C9,C11,C13�
.1 uf�
Bypass capacitors�
�
C4,C10,C12,C14�
47 uf @ 16v�
Electrolytic polarized�
�
R1�
10K ohm 1/4 watt 5%�
�
�
R2,R3,R4,R5�
470 ohm 1/4 watt 5%�
�
�
J1�
5 pin�
ICSP connector (male)�
�
J2�
2 pin�
Power connector (female)�
�
SW1�
SPST momentary pushbutton�
Reset switch�
�
SW2�
SPST switch�
Power switch�
�
ICT1S,ICT2S�
14 pin wire wrap sockets�
Interconnect socket�
�
ICT1H,ICT2H�
14 pin component headers�
Interconnect header�
�
D1�
1N4148 diode�
�
�
D2�
1N5819 diode�
�
�
LED0,LED1,LED2,LED3�
LEDs any color�
LED3 optional�
�
X1�
20 MHz crystal�
�
�
U1�
PIC18LF2620�
Microcontroller �
�
U2�
DLP USB232M-G�
Optional see text�
�
U3�
LM2940CT-5V�
5 volt regulator�
�
U4�
LM3940IT-3.3�
3.3 volt regulator�
�
U5�
USBwiz-OEM�
USB host/FAT filesystem�
�
U6�
PICTail Plus�
Ethernet module�
�
USB Flash Drive�
1 GByte typical�
Web page storage medium�
�
Prototyping board�
Rapid28iXL�
DHMicro�
�
Power supply wall wort�
9 VDC @ 300 mA or greater�
Any manufacturer�
�
Wire wrap socket�
24 pin�
For optional USB232M-G�
�
Chassis�
Size to fit�
�
�
Misc. hardware�
Screws, nuts and spacers�
For mounting modules�
�

Resource Sidebar

Information on PIC processors, the PICTail Plus ethernet interface (part #AC164123), the free TCPIP stack, the MPLAB IDE, the MCC18 C compiler and the ICD2 debugger/programmer can be found at: www.microchip.com.

Information on the USBwiz-OEM board can be found at: www.ghielectronics.com.

Information on the DLP USB232M-G, USB client module, can be found at: www.ftdichip.com.

Information on the Rapid28iXL PIC prototyping board is available at: www.dhmicro.com.

Information about the No-IP program can be found at: www.no-ip.com.

Author's BIO

Craig A. Lindley is a degreed hardware engineer who, until recently, had been writing large scale Java applications. He has authored five books and numerous articles on various computer topics. He can be contacted at: calhjh@gmail.com.

Webster – The Mini Web Server

Craig A. Lindley – 12/18/2007

Page � PAGE �11�

